Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Intensive care research ; : 1-9, 2023.
Article in English | EuropePMC | ID: covidwho-20244923

ABSTRACT

Objective Early intervention with neutralizing antibodies is considered to be effective in preventing disease progression in patients with mild to moderate COVID-19 infection. Elderly patients are the most susceptible and at a higher risk of COVID-19 infection. The present study aimed to assess the necessity and possible clinical benefits of the early administration of Amubarvimab/Romlusevimab (BRII-196/198) in the elderly population. Methods The present study was designed as a retrospective, multi-center cohort study conducted with 90 COVID-19 patients aged over 60, who were divided into two groups based on the timing of the administration of BRII-196/198 (administration at ≤ 3 days or > 3 days from the onset of infection symptoms). Results The ≤ 3 days group exhibited a greater positive effect (HR 5.94, 95% CI, 1.42–24.83;P < 0.01), with only 2 patients among 21 patients (9.52%) exhibiting disease progression, compared to the 31 patients among the 69 patients (44.93%) of the > 3 days group who exhibited disease progression. The multivariate Cox regression analysis revealed low flow oxygen support prior to BRII-196/198 administration (HR 3.53, 95% CI 1.42–8.77, P < 0.01) and PLT class (HR 3.68, 95% CI 1.37–9.91, P < 0.01) as independent predictors of disease progression. Conclusions In elderly patients with mild or moderate COVID-19 disease, who do not require oxygen support and had the risk factors for disease progression to severe COVID-19 disease, the administration of BRII-196/198 within 3 days resulted in a beneficial trend in terms of preventing disease progression.

2.
J Med Virol ; 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2232455

ABSTRACT

Retest-positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA, as a unique phenomenon among discharged individuals, has been demonstrated to be safe in the community. Still, the underlying mechanism of viral lingering is less investigated. In this study, first, we find that the frequency of viral RNA-positive retesting differs among variants. Higher ratios of viral RNA-positive retest were more frequently observed among Delta (61.41%, 514 of 837 cases) and Omicron (39.53%, 119 of 301 cases) infections than among ancestral viral infection (7.27%, 21 of 289 cases). Second, the tissues where viral RNA reoccurred were altered. Delta RNA reoccurred mainly in the upper respiratory tract (90%), but ancestral virus RNA reoccurred mainly in the gastrointestinal tract (71%). Third, vaccination did not reduce the frequency of viral RNA-positive retests, despite high concentrations of viral-specific antibodies in the blood. Finally, 37 of 55 (67.27%) Delta-infected patients receiving neutralizing antibody therapy become viral RNA retest positive when high concentrations of neutralizing antibodies still patrol in the blood. Altogether, our findings suggest that the presentence of high titers of neutralizing antibodies in the blood is incompetent in clearing residual viral RNA in the upper respiratory tract.

4.
Nat Commun ; 13(1): 3979, 2022 07 09.
Article in English | MEDLINE | ID: covidwho-1927086

ABSTRACT

Despite timely immunization programs, and efficacious vaccines conveying protection against SARS-CoV-2 infection, breakthrough infections in vaccinated individuals have been reported. The Delta variant of concern (VOC) outbreak in Guangzhou resulted in local transmission in vaccinated and non-vaccinated residents, providing a unique opportunity to study the protective effects of the inactivated vaccines in breakthrough infection. Here, we find that the 2-dose vaccinated group has similar peak viral titers and comparable speeds of viral RNA clearance to the non-vaccinated group but accelerated viral suppression in the middle course of the disease. We quantitatively demonstrate that peak viral pneumonia is significantly mitigated in the 2-dose vaccine group (median 0.298%) compared with the non-vaccinated (5.77%) and 1-dose vaccine (3.34%) groups. Pneumonia absorbance is approximately 6 days ahead in the 2-dose group (median 10 days) than in the non-vaccinated group (16 days) (p = 0.003). We also observe reduced cytokine inflammation and markedly undisturbed gene transcription profiles of peripheral blood mononuclear cells (PBMCs) in the 2-dose group. In short, our study demonstrates that prior vaccination substantially restrains pneumonia development, reduces cytokine storms, and facilitates clinical recovery.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , Humans , Leukocytes, Mononuclear , SARS-CoV-2 , Vaccination
5.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1869041

ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19) has affected >160 million individuals to date, and has caused millions of deaths worldwide, at least in part due to the unclarified pathophysiology of this disease. Identifying the underlying molecular mechanisms of COVID-19 is critical to overcome this pandemic. Metabolites mirror the disease progression of an individual and can provide extensive insights into their pathophysiological significance at each stage of disease. We provide a comprehensive view of metabolic characterisation of sera from COVID-19 patients at all stages using untargeted and targeted metabolomic analysis. As compared with the healthy controls, we observed different alteration patterns of circulating metabolites from the mild, severe and recovery stages, in both the discovery cohort and the validation cohort, which suggests that metabolic reprogramming of glucose metabolism and the urea cycle are potential pathological mechanisms for COVID-19 progression. Our findings suggest that targeting glucose metabolism and the urea cycle may be a viable approach to fight COVID-19 at various stages along the disease course.


Subject(s)
COVID-19 , Cohort Studies , Humans , Metabolomics , Pandemics , SARS-CoV-2
6.
EClinicalMedicine ; 49: 101473, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1867082

ABSTRACT

Background: The long-term prognosis of COVID-19 survivors remains poorly understood. It is evidenced that the lung is the main damaged organ in COVID-19 survivors, most notably in impairment of pulmonary diffusion function. Hence, we conducted a meta-analysis of the potential risk factors for impaired diffusing capacity for carbon monoxide (DLCO) in convalescent COVID-19 patients. Methods: We performed a systematic search of PubMed, Web of Science, Embase, and Ovid databases for relevant studies from inception until January 7, 2022, limited to papers involving human subjects. Studies were reviewed for methodological quality. Fix-effects and random-effects models were used to pool results. Heterogeneity was assessed using I2. The publication bias was assessed using the Egger's test. PROSPERO registration: CRD42021265377. Findings: A total of eighteen qualified articles were identified and included in the systematic review, and twelve studies were included in the meta-analysis. Our results showed that female (OR: 4.011; 95% CI: 2.928-5.495), altered chest computerized tomography (CT) (OR: 3.002; 95% CI: 1.319-6.835), age (OR: 1.018; 95% CI: 1.007-1.030), higher D-dimer levels (OR: 1.012; 95% CI: 1.001-1.023) and urea nitrogen (OR: 1.004;95% CI: 1.002-1.007) were identified as risk factors for impaired DLCO. Interpretation: Pulmonary diffusion capacity was the most common impaired lung function in recovered patients with COVID-19. Several risk factors, such as female, altered chest CT, older age, higher D-dimer levels and urea nitrogen are associated with impairment of DLCO. Raising awareness and implementing interventions for possible modifiable risk factors may be valuable for pulmonary rehabilitation. Funding: This work was financially supported by Emergency Key Program of Guangzhou Laboratory (EKPG21-29, EKPG21-31), Incubation Program of National Science Foundation for Distinguished Young Scholars by Guangzhou Medical University (GMU2020-207).

7.
Rev Inst Med Trop Sao Paulo ; 64: e31, 2022.
Article in English | MEDLINE | ID: covidwho-1841209

ABSTRACT

The B.1.617.2 (Delta) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has contributed to a new increment in cases across the globe. We conducted a prospective follow-up of COVID-19 cases to explore the recurrence and potential propagation risk of the Delta variant and discuss potential explanations for the infection recurrence. A prospective, non-interventional follow-up of discharged patients who had SARS-CoV-2 infections by the Delta variant in Guangdong, China, from May 2021 to June 2021 was conducted. The subjects were asked to complete a physical health examination and undergo nucleic acid testing and antibody detection for the laboratory diagnosis of COVID-19. In total, 20.33% (25/123) of patients exhibited recurrent positive results after discharge. All patients with infection recurrence were asymptomatic and showed no abnormalities in the pulmonary computed tomography. The time from discharge to the recurrent positive testing was usually between 1-33 days, with a mean time of 9.36 days. The cycle threshold from the real-time polymerase chain reaction assay that detected the recurrence of positivity ranged from 27.48 to 39.00, with an average of 35.30. The proportion of vaccination in the non-recurrent group was higher than that in the recurrently positive group (26% vs. 4%; χ2 = 7.902; P < 0.05). Two months after discharge, the most common symptom was hair loss and 59.6% of patients had no long-term symptoms at all. It is possible for the Delta variant SARS-CoV-2 patients after discharge to show recurrent positive results of nucleic acid detection; however, there is a low risk of continuous community transmission. Both, the physical and mental quality of life of discharged patients were significantly affected. Our results suggest that it makes sense to implement mass vaccination against the Delta variant of SARS-CoV-2.


Subject(s)
COVID-19 , Nucleic Acids , China/epidemiology , Follow-Up Studies , Hospitals , Humans , Patient Discharge , Prospective Studies , Quality of Life , SARS-CoV-2
8.
Signal Transduct Target Ther ; 6(1): 427, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1795805

ABSTRACT

Abnormal glucose and lipid metabolism in COVID-19 patients were recently reported with unclear mechanism. In this study, we retrospectively investigated a cohort of COVID-19 patients without pre-existing metabolic-related diseases, and found new-onset insulin resistance, hyperglycemia, and decreased HDL-C in these patients. Mechanistically, SARS-CoV-2 infection increased the expression of RE1-silencing transcription factor (REST), which modulated the expression of secreted metabolic factors including myeloperoxidase, apelin, and myostatin at the transcriptional level, resulting in the perturbation of glucose and lipid metabolism. Furthermore, several lipids, including (±)5-HETE, (±)12-HETE, propionic acid, and isobutyric acid were identified as the potential biomarkers of COVID-19-induced metabolic dysregulation, especially in insulin resistance. Taken together, our study revealed insulin resistance as the direct cause of hyperglycemia upon COVID-19, and further illustrated the underlying mechanisms, providing potential therapeutic targets for COVID-19-induced metabolic complications.


Subject(s)
COVID-19/blood , Hyperglycemia/blood , Insulin Resistance , Lipid Metabolism , Lipids/blood , SARS-CoV-2/metabolism , Adult , Aged , Biomarkers/blood , COVID-19/complications , Female , Humans , Hyperglycemia/etiology , Male , Middle Aged , Retrospective Studies
9.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1762251

ABSTRACT

In contrast to dexamethasone, the clinical efficacy of methylprednisolone (MP) remains controversial, and a systems biology study on its mechanism is lacking. In this study, a total of 38 severe COVID-19 patients were included. The demographics, clinical characteristics, and severity biomarkers including C-reactive protein (CRP), d-dimer, albumin, and Krebs von den Lungen 6 of patients receiving MP (n=26, 40 mg or 80 mg daily for 3-5 days) and supportive therapy (n=12) were compared. Longitudinal measurements of 92 cytokines in MP group from admission to over six months after discharge were performed by multiplex Proximity Extension Assay. The results showed that demographics, baseline clinical characteristics were similar in MP and non-MP groups. No death occurred and the hospital stays between the two groups were similar. Kinetics studies showed that MP was not better than supportive therapy at improving the four severity biomarkers. Cytokines in MP group were characterized by five clusters according to their baseline levels and responses to MP. The immunological feature of severe COVID-19 could be defined by the “core signature” cytokines in cluster 2: MCP-3, IL-6, IFN-γ, and CXCL10, which strongly correlated with each other and CRP, and are involved in cytokine release storm. The “core signature” cytokines were significantly upregulated at baseline and remained markedly elevated after MP treatment. Our work showed a short course of MP therapy could not rapidly improve the immune disorders among severe COVID-19 patients or clinical outcomes, also confirmed “core signature” cytokines, as severity biomarkers similar to CRP, could be applied to evaluate clinical treatment effect.

10.
EClinicalMedicine ; 43: 101255, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1676715

ABSTRACT

BACKGROUND: The dynamic trends of pulmonary function in coronavirus disease 2019 (COVID-19) survivors since discharge have been rarely described. We aimed to describe the changes of lung function and identify risk factors for impaired diffusion capacity. METHODS: Non-critical COVID-19 patients admitted to the Guangzhou Eighth People's Hospital, China, were enrolled from March to June 2020. Subjects were prospectively followed up with pulmonary function tests at discharge, three and six months after discharge. FINDINGS: Eighty-six patients completed diffusion capacity tests at three timepoints. The mean diffusion capacity for carbon monoxide (DLCO)% pred was 79.8% at discharge and significantly improved to 84.9% at Month-3. The transfer coefficient of the lung for carbon monoxide (KCO)% pred significantly increased from 91.7% at discharge to 95.7% at Month-3. Both of them showed no further improvement at Month-6. The change rates of DLCO% pred and KCO% pred were significantly higher in 0-3 months than in 3-6 months. The alveolar ventilation (VA) improved continuously during the follow-ups. At Month-6, impaired DLCO% pred was associated with being female (OR 5.2 [1.7-15.8]; p = 0.004) and peak total lesion score (TLS) of chest CT > 8.5 (OR 6.6 [1.7-26.5]; p = 0.007). DLCO% pred and KCO% pred were worse in females at discharge. And in patients with impaired diffusion capacity, females' DLCO% pred recovered slower than males. INTERPRETATION: The first three months is the critical recovery period for diffusion capacity. The impaired diffusion capacity was more severe and recovered slower in females than in males. Early pulmonary rehabilitation and individualized interventions for recovery are worthy of further investigations.

12.
China Tropical Medicine ; 21(7):676-680, 2021.
Article in Chinese | GIM | ID: covidwho-1408642

ABSTRACT

Objective: To explore the guiding value of dynamic changes of lung ultrasound score (LUS) for respiratory support therapy in patients with severe coronavirus disease 2019(COVID-19).

13.
EClinicalMedicine ; 40: 101129, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1401440

ABSTRACT

BACKGROUND: A novel variant of SARS-CoV-2, the Delta variant of concern (VOC, also known as lineage B.1.617.2), is fast becoming the dominant strain globally. We reported the epidemiological, viral, and clinical characteristics of hospitalized patients infected with the Delta VOC during the local outbreak in Guangzhou, China. METHODS: We extracted the epidemiological and clinical information pertaining to the 159 cases infected with the Delta VOC across seven transmission generations between May 21 and June 18, 2021. The whole chain of the Delta VOC transmission was described. Kinetics of viral load and clinical characteristics were compared with a cohort of wild-type infection in 2020 admitted to the Guangzhou Eighth People's Hospital. FINDINGS: There were four transmission generations within the first ten days. The Delta VOC yielded a significantly shorter incubation period (4.0 vs. 6.0 days), higher viral load (20.6 vs. 34.0, cycle threshold of the ORF1a/b gene), and a longer duration of viral shedding in pharyngeal swab samples (14.0 vs. 8.0 days) compared with the wild-type strain. In cases with critical illness, the proportion of patients over the age of 60 was higher in the Delta VOC group than in the wild-type strain (100.0% vs. 69.2%, p = 0.03). The Delta VOC had a higher risk than wild-type infection in deterioration to critical status (hazards ratio 2.98 [95%CI 1.29-6.86]; p = 0.01). INTERPRETATION: Infection with the Delta VOC is characterized by markedly increased transmissibility, viral loads and risk of disease progression compared with the wild-type strain, calling for more intensive prevention and control measures to contain future outbreaks. FUNDING: National Grand Program, National Natural Science Foundation of China, Guangdong Provincial Department of Science and Technology, Guangzhou Laboratory.

14.
Nat Commun ; 12(1): 4984, 2021 08 17.
Article in English | MEDLINE | ID: covidwho-1361636

ABSTRACT

SARS-CoV-2 vaccination has been launched worldwide to build effective population-level immunity to curb the spread of this virus. The effectiveness and duration of protective immunity is a critical factor for public health. Here, we report the kinetics of the SARS-CoV-2 specific immune response in 204 individuals up to 1-year after recovery from COVID-19. RBD-IgG and full-length spike-IgG concentrations and serum neutralizing capacity decreases during the first 6-months, but is maintained stably up to 1-year after hospital discharge. Even individuals who had generated high IgG levels during early convalescent stages had IgG levels that had decreased to a similar level one year later. Notably, the RBD-IgG level positively correlates with serum neutralizing capacity, suggesting the representative role of RBD-IgG in predicting serum protection. Moreover, viral-specific cellular immune protection, including spike and nucleoprotein specific, persisted between 6 months and 12 months. Altogether, our study supports the persistence of viral-specific protective immunity over 1 year.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , Humans , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Spike Glycoprotein, Coronavirus/immunology
15.
Nat Med ; 26(9): 1491-1493, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-1286464

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(2): 229-232, 2021 Feb.
Article in Chinese | MEDLINE | ID: covidwho-1138769

ABSTRACT

OBJECTIVE: To investigate the cardiac presentations and the possible influencing factors of severe and critical coronavirus disease 2019 (COVID-19). METHODS: A retrospective study was conducted. Patients with severe and critical COVID-19 admitted to the Eighth People's Hospital of Guangzhou from January 21st to February 24th 2020 were enrolled. According to the clinical classification, the patients were divided into severe group and critical group. The myocardial injury markers, such as lactate dehydrogenase (LDH), aspartate aminotransferase (AST), creatine kinase (CK), cardiac troponin I (cTnI), myoglobin (MYO), MB isoenzyme of creatine kinase (CK-MB), B-type natriuretic peptide (BNP) and electrocardiogram (ECG) changes were compared between the two groups. RESULTS: A total of 55 COVID-19 patients were selected, including 15 critical cases and 40 severe cases. The patients with severe and critical COVID-19 were male-dominated (61.8%), the average age was (61.2±13.0) years old, 83.6% (46 cases) of them had contact history of Hubei, 38.2% (21 cases) of them were complicated with hypertension. There was no significant difference in baseline data between the critical group and the severe group. Myocardial injury markers of critical and severe COVID-19 patients were increased in different proportion, LDH increased in most patients (20 severe cases and 7 critical cases), followed by AST (16 severe cases and 5 critical cases). There was significant difference in the number of patients with elevated CK between severe group and critical group (cases: 1 vs. 4, P = 0.027). Abnormal ECG was found in 39 of 42 patients with ECG examination. Nonspecific change of T wave was the most common. Before and after treatment, 9 of 15 patients with changes of ECG and myocardial injury markers had oxygenation index less than 100 mmHg (1 mmHg = 0.133 kPa), and the prominent changes of ECG were heart rate increasing and ST-T change. CONCLUSIONS: The increase of myocardial injury markers and abnormal ECG were not specific to the myocardial injury of severe and critical COVID-19 patients. At the same time, the dynamic changes of myocardial injury markers and ECG could reflect the situation of myocardial damage.


Subject(s)
COVID-19 , Aged , Biomarkers , Creatine Kinase, MB Form , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2 , Troponin I
17.
Open Forum Infect Dis ; 7(6): ofaa187, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-1109308

ABSTRACT

BACKGROUND: The clinical manifestations and factors associated with the severity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections outside of Wuhan are not clearly understood. METHODS: All laboratory-confirmed cases with SARS-Cov-2 infection who were hospitalized and monitored in Guangzhou Eighth People's Hospital were recruited from January 20 to February 10. RESULTS: A total of 275 patients were included in this study. The median patient age was 49 years, and 63.6% had exposure to Wuhan. The median virus incubation period was 6 days. Fever (70.5%) and dry cough (56.0%) were the most common symptoms. A decreased albumin level was found in 51.3% of patients, lymphopenia in 33.5%, and pneumonia based on chest computed tomography in 86%. Approximately 16% of patients (n = 45) had severe disease, and there were no deaths. Compared with patients with nonsevere disease, those with severe disease were older, had a higher frequency of coexisting conditions and pneumonia, and had a shorter incubation period (all P < .05). There were no differences between patients who likely contacted the virus in Wuhan and those who had no exposure to Wuhan. Multivariate logistic regression analysis indicated that older age, male sex, and decreased albumin level were independently associated with disease severity. CONCLUSIONS: Most of the patients infected with SARS-CoV-2 in Guangzhou, China are not severe cases and patients with older age, male, and decreased albumin level were more likely to develop into severe ones.

18.
Cell ; 184(7): 1895-1913.e19, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1062273

ABSTRACT

A dysfunctional immune response in coronavirus disease 2019 (COVID-19) patients is a recurrent theme impacting symptoms and mortality, yet a detailed understanding of pertinent immune cells is not complete. We applied single-cell RNA sequencing to 284 samples from 196 COVID-19 patients and controls and created a comprehensive immune landscape with 1.46 million cells. The large dataset enabled us to identify that different peripheral immune subtype changes are associated with distinct clinical features, including age, sex, severity, and disease stages of COVID-19. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was found in diverse epithelial and immune cell types, accompanied by dramatic transcriptomic changes within virus-positive cells. Systemic upregulation of S100A8/A9, mainly by megakaryocytes and monocytes in the peripheral blood, may contribute to the cytokine storms frequently observed in severe patients. Our data provide a rich resource for understanding the pathogenesis of and developing effective therapeutic strategies for COVID-19.


Subject(s)
COVID-19/immunology , Megakaryocytes/immunology , Monocytes/immunology , RNA, Viral , SARS-CoV-2/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , China , Cohort Studies , Cytokines/metabolism , Female , Humans , Male , Middle Aged , RNA, Viral/blood , RNA, Viral/isolation & purification , Single-Cell Analysis , Transcriptome/immunology , Young Adult
19.
J Med Virol ; 93(4): 2505-2512, 2021 04.
Article in English | MEDLINE | ID: covidwho-1023298

ABSTRACT

To investigate the dynamic changes of Krebs von den Lungen-6 (KL-6) among patients with coronavirus disease 2019 (COVID-19) and the role of KL-6 as a noninvasive biomarker for predicting long-term lung injury, the clinical information and laboratory tests of 166 COVID-19 patients were collected, and a correlation analysis between KL-6 and other parameters was conducted. There were 17 (10.2%, 17/166) severe/critical and 149 (89.8%, 149/166) mild COVID-19 patients in our cohort. Serum KL-6 was significantly higher in severe/critical COVID-19 patients than in mild patients (median 898.0 vs. 451.2 U/ml, p < .001). KL-6 was next confirmed to be a sensitive and specific biomarker for distinguishing mild and severe/critical patients and correlate to computed tomography lung lesions areas. Serum KL-6 concentration during the follow-up period (>100 days postonset) was well correlated to those concentrations within 10 days postonset (Pearson r = .867, p < .001), indicating the prognostic value of KL-6 levels in predicting lung injury after discharge. Finally, elevated KL-6 was found to be significantly correlated to coagulation disorders, and T cells subsets dysfunctions. In summary, serum KL-6 is a biomarker for assessing COVID-19 severity and predicting the prognosis of lung injury of discharged patients.


Subject(s)
COVID-19/blood , Lung Injury/blood , Mucin-1/blood , Adult , Aged , Biomarkers/blood , COVID-19/diagnostic imaging , Female , Humans , Lung/diagnostic imaging , Lung/physiopathology , Lung Injury/diagnostic imaging , Lung Injury/physiopathology , Male , Middle Aged , Prognosis , Retrospective Studies , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tomography, X-Ray Computed/methods
20.
China Tropical Medicine ; 20(11):1041-1043, 2020.
Article in Chinese | GIM | ID: covidwho-1016423

ABSTRACT

Objective: To explore and understand the injury degree of human lung induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), through retrospectively analysis of the 47 patients' pulmonary function in the period of recovery from COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL